Use of a Highly Hindered Phosphino-alkoxide Ligand in the Formation of Monomeric Homoleptic Lanthanoid Metal Complexes: X-Ray Structures of $[Ln(OCBut_2CH_2PMe_2)_3]$ (Ln = Y or Nd)[†]

Peter B. Hitchcock, Michael F. Lappert, and Iain A. MacKinnon

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Complexes $[Ln(OCBu_{2}CH_{2}PMe_{2})_{3}]$ [Ln = Y (1) or Nd (2)] are crystalline and hydrocarbon-soluble; they are the first examples of monomeric, homoleptic Group 3 or lanthanoid metal alkoxides and also the first crystallographically authenticated Group 3 or early (f⁰–f³) lanthanoid metal tertiary phosphine complexes $[^{1}J(^{31}P-^{89}Y) = 59 \text{ Hz}]$, with the following geometric parameters for (1) [or (2) in square brackets]: <Ln-O> 2.090(4) [2.174(2)], <Ln-P> 3.045(2) [3.154(2)] Å, and <O-Ln-O'> 110.5(2) [114.5(1)]°.

Simple lanthanoid metal (here taken to include Sc, Y, and La; and collectively abbreviated as Ln) alkoxides and aryloxides have been much studied.¹ The simple aryloxides are organic solvent-insoluble polymers. Monomeric, homoleptic, hydrocarbon-soluble lanthanoid metal aryloxides have been prepared at Sussex; they were derived from the bulky phenols HOAr^R (Ar^R = $C_6H_2Bu^{t_2}-2, 6-R-4$; R = H, Me, or Bu^{t_1}), e.g., the X-ray-characterised $[Sc(OAr^{Me})_3]$,² $[Y(OAr^H)_3]$,^{3a} and $[Ce(OAr^H)_3]$,^{3b} In contrast, many known lanthanoid metal alkoxides appear to be relatively low molecular weight oligomers of somewhat uncertain composition.^{1,4} Single crystal X-ray analyses of (i) a chloride contaminated NdIII isopropoxide $[Nd_6Cl(OPr^i)_{17}]$ (I) showed it to have an essentially hexameric structure with a Cl- replacing one of the eighteen $-OPr^i$ ligands;⁵ and (ii) $[Y_3(\mu_3-OBu^t)(\mu_3-Cl)(\mu_2-Cl)(\mu_3-C$ $OBu^{t}_{3}(OBu^{t}_{4}(thf)_{2}]$ (II) (thf = tetrahydrofuran) and $[{Y_4(\mu_3-OBu^t)_2(\mu_2-OBu^t)_4(OBu^t)_4(\mu_4-O)(\mu_2-Cl)_2Li_4(\mu_2-U)_4(\mu_2-U)_4$

OBu¹)₂] were taken as examples of structures containing $Ln_3(\mu_3$ -OR)(μ_3 -X)(μ_2 -OR)₃ building blocks.⁴ We now report the first monomeric homoleptic lanthanoid metal alkoxides (1) and (2), albeit containing β -functionality.

The Ln³⁺ ions, being hard Lewis acids, have a very extensive co-ordination chemistry involving oxygen- and nitrogen-centred ligands. Conversely, very few tertiary phosp-hine-lanthanoid metal complexes are known, and X-ray data exist for only two: $[Yb\{N(SiMe_3)_2\}_2(dmpe)]^6$ and $[Yb(\eta-C_5Me_5)_2(Cl)(dmpm)]^7$ (dmpe = Me_2PCH_2CH_2PMe_2, dmpm = Me_2PCH_2PMe_2).

We have previously reported the synthesis and structures of the lithium derivatives of two novel, highly hindered, phosphine-functionalised alkoxide ligands, $[Li(\mu - OCBut_2CH_2PR_2)]_2$ (R = Me or Ph).⁸ We now show that they may be used to prepare [equation (1)] the homoleptic lanthanoid metal alkoxides (1) and (2), which incidentally provide the first examples of a Group 3 or early (pre-Sm) lanthanoid metal tertiary phosphine complex.

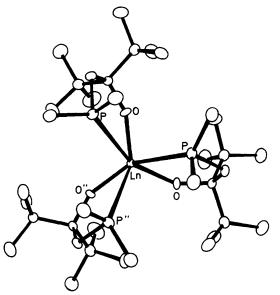
$$LnCl_{3} + 3/2[\underline{Li(\mu - OCBu^{t}_{2}CH_{2}PMe_{2})}]_{2} \longrightarrow [Ln(OCBu^{t}_{2}CH_{2}PMe_{2})_{3}] + 3LiCl$$
(1)
(1), (2)

(1)
$$Ln = Y, 45\%$$
, colourless, m.p. *ca*. 260 °C (decomp.)
(2) $Ln = Nd, 50\%$, pale blue, m.p. 240–242 °C

Compounds (1) and (2) gave satisfactory microanalyses, and were further identified by n.m.r. spectroscopy.[‡] It is

noteworthy that ⁸⁹Y is an n.m.r. active nucleus $(I = \frac{1}{2}, 100\%$ abundance) and that Nd³⁺ is paramagnetic and has the electronic ground state [Xe]4f³. The ¹H n.m.r. spectrum of the yttrium alkoxide (1) revealed the CH₂ resonance as a complex multiplet which was unresolved, rather than a doublet {cf.,8 the ¹H n.m.r. spectrum of [Li(OCBu¹₂CH₂PMe₂)]₂, which showed only ³¹P-¹H coupling}. The ¹H n.m.r. spectrum of the neodymium analogue (2) had each signal (i) considerably shifted from that observed for (1), and (ii) severely broadened. The ambient temperature ³¹P{¹H} n.m.r. spectrum of (1) exhibted a doublet; the splitting arises from coupling between ³¹P and ⁸⁹Y, ¹J(³¹P-⁸⁹Y) = 59 Hz, and this is one of the first recorded examples of such coupling. The ³¹P resonance of (2) was not observed.

The structures of crystalline $[Ln(OCBu^{1}_{2}CH_{2}PMe_{2})_{3}][Ln = Y (1) or Nd (2)]$ were determined by single crystal X-ray diffraction and are depicted in Figure 1.§ Each of these molecules is a monomer in the facial configuration, and lies on a threefold crystallographic axis. The LnO₃ skeletal geometry is intermediate between pyramidal and planar, with Ln lying out of the O₃ plane in the direction of the P₃ atoms. By contrast, in $[Y(OArH_{3}]$ the YO₃ geometry is almost exactly planar $[OYO' = 119.8(6)^{\circ}$ (mean)];^{3a} although the Sc and Ce analogues are more nearly pyramidal, with the Ln atom in $[Ln(OArR_{3}]$ out of the plane of the three ligating oxygen atoms by 0.13 Å (Sc),² 0.09 Å (Y),^{3a} or 0.54 Å (Ce).^{3b}


The Y–O distance in (1) of 2.090(4) Å, with the exception of $\langle Y-O \rangle$ of 2.00(1) Å in $[Y(OAr^{H})_{3}]$,^{3a} and the terminal $\langle Y-O \rangle$ of 2.05(4) Å in (II),⁴ is shorter than most of the others previously observed.⁹ Somewhat surprisingly, the Nd–O bond distance in (2) [2.174(2) Å] is longer than the terminal $\langle Nd-O \rangle$ [2.05(2) Å] recorded for $[Nd_{6}Cl(OPr^{i})_{17}]$ (I).⁵ This is a possible consequence of interligand repulsion in (2).

The observed $\langle Y-P \rangle$ and $\langle Nd-P \rangle$ distances, 3.045(2) and 3.154(1) Å for (1) and (2) respectively, are somewhat

[†] No reprints available.

[‡] Selected n.m.r. data [³¹P at 32.4 MHz (δ in p.p.m. rel. to 85% aq. H₃PO₄), ¹H at 80 or 360 MHz (δ in p.p.m. rel. to ext. SiMe₄); in C₆D₆ at 305 K] (1): ³¹P{¹H} δ -45 [d, J_{PY} 59 Hz]: ¹H δ 2.14 (2H, m, CH₂), 0.96 (6H, s, PMe₂), and 1.29 (18H, s, Bu^t). (2): ³¹P not observed; ¹H δ 18.48 (2H, br. s, CH₂, w_{4} 65 Hz), -13.73 (6H, br. s, PMe₂, w_{4} 85 Hz), and 11.29 (18H, br. s, Bu^t, w_{4} 210 Hz).

[§] Crystal data: for (1): $C_{36}H_{78}O_3P_3Y$, M = 740.9, cubic, space group *Pa*3, crystal size $0.2 \times 0.2 \times 0.15$ mm, a = 20.521(2) Å, Z = 8, $D_c = 1000$ 1.14 g cm⁻³, μ (Mo- K_{α}) = 14.9 cm⁻¹, 801 reflections $|F^2| > \sigma(F^2)$, 2 < $\theta < 22^{\circ}, R = 0.049, R' = 0.040.$ For (2): $C_{36}H_{78}NdO_3P_3, M = 796.2,$ rhombohedral, space group $R\overline{3}c$, crystal size $0.5 \times 0.3 \times 0.2$ mm, a =16.857(3) Å, $\alpha = 72.90(1)^{\circ}$, Z = 4, $D_c = 1.24$ g cm⁻³, μ (Mo- K_{α}) = 13.6 cm⁻¹, 1960 reflections $|F^2| > \sigma(F^2)$, $2 < \theta < 25^\circ$, R = 0.033, R' =0.040. For both structures data were collected on an Enraf-Nonius CAD4 diffractometer. The structures were solved by routine heavy atom methods and refined by full matrix least squares with all non-hydrogen atoms anisotropic. Hydrogen atoms were located in a difference map and refined isotropically for (2), and placed in calculated positions (C-H 1.08 Å) for (1). Absorption corrections were not applied for either structure. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue 1.

Figure 1. The X-ray structure and atom labelling scheme for $[Ln(OCBu^{2}_{2}CH_{2}PMe_{2})_{3}]$. Relevant dimensions for the yttrium compound (data for the Nd analogue in square brackets) are: <Y-O> 2.090(4) [2.174(2)], <Y-P> 3.045(2) [3.154(2)], <P-C> 1.834(13) [1.830(15)], <O-C> 1.411(8) [1.407(3)] Å, <P-Y-O> 63.3(1) [60.2(1)], <O-Y-O'> 110.5(2) [114.5(1)], <P-Y-P'> 87.65(6) [88.6(1)]°.

long, perhaps indicative of (i) a somewhat weak interaction, and (ii) the low affinity lanthanoid metals have for soft ligands, such as phosphines. From $\langle Yb-P \rangle$ in [Yb(η -C₅Me₅)₂Cl(dmpm)] (III)⁷ and Ln³⁺ radii (Y³⁺, 0.88; Nd³⁺, 0.995; Yb³⁺, 0.858 Å), values of *ca*. 2.96 Å for <Y–P> and *ca*. 3.08 Å for <Nd–P> are predicted for the Y and Nd analogues of (III), respectively; these are *ca*. 3% shorter than observed in (1) or (2).

We thank the S.E.R.C. and I.C.I. plc (New Science Group) (and Dr. R. A. Head for his interest) for a C.A.S.E. award to I. A. M., and Dr. A. G. Avent for n.m.r. data.

Received, 12th May 1988; Com. 8/018661

References

- 1 (a) D. C. Bradley, D. P. Gaur, and R. C. Mehrotra, 'Metal Alkoxides,' Academic Press, London, 1978, and references therein; (b) R. C. Mehrotra, P. N. Kapoor, and J. M. Batwar, *Coord. Chem. Rev.*, 1980, **31**, 67, and references therein.
- 2 P. B. Hitchcock, M. F. Lappert, and A. Singh, J. Chem. Soc., Chem. Commun., 1983, 1449.
- 3 (a) P. B. Hitchcock, M. F. Lappert, and R. G. Smith, *Inorg. Chim.* Acta., 1987, **139**, 183; (b) H. A. Stecher, A. Sen, and A. L. Rheingold, *Inorg. Chem.*, 1988, **27**, 1130.
- 4 W. J. Evans, M. S. Sollberger, and T. P. Hanusa, J. Am. Chem. Soc., 1988, 110, 1841.
- 5 R. A. Andersen, D. H. Templeton, and A. Zalkin, *Inorg. Chem.*, 1978, 17, 1962.
- 6 T. D. Tilley, R. A. Andersen, and A. Zalkin, J. Am. Chem. Soc., 1982, 104, 3725.
- 7 T. D. Tilley, R. A. Andersen, and A. Zalkin, *Inorg. Chem.*, 1983, 22, 856.
- 8 L. M. Engelhardt, J. M. Harrowfield, M. F. Lappert, I. A. MacKinnon, B. H. Newton, C. L. Raston, B. W. Skelton, and A. H. White, J. Chem. Soc., Chem. Commun., 1986, 846.
- 9 W. J. Evans and M. S. Sollberger, J. Am. Chem. Soc., 1986, 108, 6095, and references therein.